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SPECIFYING AND REFINING A MEASUREMENT MODEL FOR A 

SIMULATION-BASED ASSESSMENT1 

Roy Levy and Robert J. Mislevy 

CRESST/University of Maryland, College Park 

Abstract 

The challenges of modeling students’ performance in simulation-based assessments 
include accounting for multiple aspects of knowledge and skill that arise in different 
situations and the conditional dependencies among multiple aspects of performance in a 
complex assessment.  This paper describes a Bayesian approach to modeling and 
estimating cognitive models in such situations, in terms of both statistical machinery and 
actual instrument development.  The method taps the knowledge of experts to provide 
initial estimates for the probabilistic relationships among the variables in a multivariate 
latent variable model and refines these estimates using Markov chain Monte Carlo 
(MCMC) procedures.  This process is illustrated in the context of NetPASS, a complex 
simulation-based assessment in the domain of computer networking.  We describe a 
parameterization of the relationships in NetPASS via an ordered polytomous item 
response model and detail the updating of the model with observed data via Bayesian 
statistical procedures ultimately being provided by Markov chain Monte Carlo 
estimation.          

Specifying and Refining a Complex Measurement Model 

 Instruments in educational measurement have taken on a variety of forms 
ranging from the more familiar( e.g., multiple-choice formats) to the unique (e.g., 
computer simulation of a real-world application).  Different formats yield different 
work products, for example, a scantron sheet with circles filled in, essays to be 
scored by raters, and portfolios.  Though methods for drawing inferences from 
examinees’ work products to their knowledge, skills, and abilities exist for the more 
popular assessment instruments, new and innovative assessment instruments are 
often left needing inferential procedures to be developed individually.  Nonstandard 
and complex tasks result in complex work products, and different combinations of 
knowledge and skill may be tapped in different tasks or subtasks.  Drawing proper 
inferences in these situations requires models that accumulate and incorporate 

                                                 
1 We wish to thank David Williamson, Malcolm Bauer, Russell Almond, Duanli Yan, and Margaret 
Redman of Educational Testing Service and John Behrens and Sarah Demark of Cisco Learning 
Institute for their involvement with, and their support of our participation in, the NetPASS project. 
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information in order to produce “scores” that are interpretable and valid for 
inferences about students.  It is these models that we investigate in this paper.  More 
specifically, we focus on a method of specifying and refining models that allow for 
updating beliefs and reaching conclusions about examinees based on observable 
variables that are extracted from multiple, complex work products. 

 Drawing from Schum (1987), we maintain that probability-based reasoning can 
be applied to all forms of inference, and more specifically to inference in educational 
measurement; and moreover, that it is particularly useful for inferences from 
innovative and complex assessment instruments (Mislevy, 1994).  In what follows, 
we describe such probability-based reasoning in detail, and illustrate ensuing 
methods in practice via an example from a complex assessment of the cognitive 
development of students in the Cisco Networking Academy Program (CNAP).  We 
draw upon language and concepts of the evidence-centered assessment design 
methodology of Mislevy, Steinberg, and Almond (2003), referring in particular to 
Student Models, Evidence Models, and Task Models of the conceptual assessment 
framework or CAF. 

 Specifically, the development of NetPASS, a measurement device to be utilized 
to assess cognitive development of students in the third semester of Cisco 
Networking Academy Program’s sequence of courses on computer networking, will 
be discussed. Though the particulars of NetPASS will be described in some detail, 
the process of instrument and model development can be reinstantiated in settings 
that, on the surface, may appear to have little in common with NetPASS.   

Bayesian Inference Networks in Assessment 

 A Bayesian approach to assessment starts by characterizing aspects of students’ 
knowledge and skill in terms of a vector-valued “Student Model variable” θ, and 
aspects of their behavior in terms of possibly vector-valued “observable variables” 
X.  Conditional probability distributions )|( θXP , obtained through theory, expert 

opinion, empirical data, or some combination of these, characterize how 
performance depends on knowledge and skill in task situations.  Letting the “prior” 
probability distribution )(θP  denote the assessor’s belief about a student’s θ at a 

given point in time, observing X leads to an updated “posterior” probability 
distribution )|( XP θ by Bayes theorem.     

 Though the required calculations can be carried out in simple situations using 
the textbook definition of Bayes theorem, computation for larger, more complex 
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situations quickly becomes infeasible.  Recent developments with Bayesian inference 
networks (BINs; Jensen, 1996, 2001) permit Bayesian updating even in very large 
collections of variables, when conditional independence relationships posited by 
theory or entailed by observational designs can be exploited.  Fortunately, this is 
often the case in educational assessment, so BINs can serve as the statistical model 
for updating Student Model variables (see Martin & VanLehn, 1995, and Mislevy, 
1994, on the use of BINs in assessment).  The relationships among variables in a BIN 
constitute the reasoning structures of the network.  The likelihoods within the 
network that define the deductive reasoning structures—likely values of data given 
states of the Student Model—support subsequent inductive reasoning from the 
observed data to probabilities of the states of Student Model variables (Mislevy, 
1994).  

A BIN is a graphical model (of which Figure 1, depicting the NetPASS Student 
Model, is an example) of a joint probability distribution over a set of random 
variables, and consists of the following elements (Jensen, 1996):   

 

Figure 1. The NetPASS Student Model. 

Network Modeling(SM) 

Troubleshoot(SM)Design(SM) Implement/Configure(SM)

Network Proficiency(SM)

Networking Disciplinary Knowledge(SM)
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• A set of variables (represented by ellipses and referred to as nodes) with a 
set of directed edges (represented by arrows) between nodes indicating the 
statistical dependence between variables.  Nodes at the source of a directed 
edge are referred to as “parents” of nodes at the destination of the directed 
edge, their “children.”  In Figure 1, for example, Design is a child of Network 
Proficiency, and both Network Disciplinary Knowledge and Network Modeling 
are parents of Network Proficiency.   

• The absence of an edge between two variables indicates a conditional 
independence between them, given variables on the path(s) between them.  
For example, the variables Design and Network Disciplinary Knowledge are 
independent if the value of Network Proficiency is known.   

• The variables and the directed edges together constitute what is commonly 
referred to as a directed acyclic graph (DAG; Brooks, 1998; Edwards, 1998; 
Jensen, 1996; Pearl, 1988).  These graphs are directed in that the edges 
follow a “flow” of dependence in a single direction (i.e., the arrows are 
always unidirectional rather than bi-directional).  The graphs are acyclic in 
that following the directional flow of directed edges from any node it is 
impossible to return to the node of origin. 

• For each variable, there is an set of conditional probability distributions 
corresponding to each possible pattern of values of the parents.  These 
distributions are graphically represented squares; the connections between 
variables are routed through these relationships.  Associated with variables 
having no parents, such as Network Disciplinary Knowledge in Figure 1, are 
unconditional probability distributions.  

 As described below, we can define fragments of BINs in terms of a BIN for 
Student Model variables and a BIN for conditional distributions of the observable 
variables of each task, or Evidence Model BINs. Characteristics of tasks can be 
important in determining the conditional probabilities in evidence model BIN 
fragments; in the sequel, we shall refer to Task Model variable Y in this connection.  
Before turning to the probability framework used to represent these models, we will 
note some recurring ways that variables in BINs for assessment relate to one 
another, and which we will want to build into conditional probability distributions. 

Relationships Among Variables 

 This section sketches out a variety of evidentiary structures among the Student 
Model and observable variables.  Though certainly not an exhaustive set of all 
possible structures, these structures appear repeatedly in the NetPASS assessment.   
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Bivariate Relationships in Modeling Skills Involved in an Assessment 

 Bivariate relationships concern two variables; in the framework of BINs, this 
corresponds to the case of modeling a variable as a child of a single parent.  Two 
bivariate relationships appearing in NetPASS are presented below in the context of 
relating cognitive skills. 

• Direct Dependence: The value of one variable influences expectations for 
the other in the form of a probability distribution. 

• Ceiling: The value of one variable not only influences the expectation of the 
other, but sets a maximum value that the other one can take.  For example, 
the value of the child cannot exceed the value of the parent.    

Multivariate Relationships in Modeling Performance on an Assessment 

 Multivariate relationships involve at least three variables; in the framework of 
BINs, this corresponds to the case of modeling a variable as a child of multiple 
parents.  Most of the multivariate relationships discussed are generalizations of the 
bivariate relationships discussed above.  The following illustrations concern 
modeling performance—that is, observable variables modeled as dependent on 
multiple skills and abilities. 

• Conjunctions: A generalization of the ceiling relationship.  The minimum 
value of the skills defines the ceiling for performance; the absence of any of 
them leads to an expectation of lower levels of performance.  Conjunctions 
correspond to the logical term “and,” indicating that the joint occurrence or 
instantiation is required. 

• Compensatory relationships: A generalization of the direct dependence 
relationship.  Multiple skills impact performance such that the increase in 
any of these skills leads to an expectation of an increase in performance. 

• Conditional dependence relationships: Conditional dependence 
relationships occur among observable variables, indicating that the 
observable variables are related in ways above and beyond those determined 
by their parent skills.  The consequences of ignoring these relationships can 
be deleterious in estimating the values of variables and the precision of the 
estimates (Mislevy & Patz, 1995; Patz, Junker, Johnson, & Mariano, 2002). 

 These basic structures represent but a few of the limitless number of ways to 
model relationships.  For other common structures, see Mislevy et al. (2002).  While 
estimates of these relationships can come from data, the assessment designer’s 
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familiarity and understanding of the knowledge, skills, and abilities of the domain 
of interest can contribute both to defining their form and values.   

The Probability Framework 

 Gelman, Carlin, Stern, and Rubin (1995, p. 3) defined the first step in 
conducting a Bayesian analysis as setting up a full probability model, specifically, a 
joint distribution of all quantities, observable and unobservable.  Furthermore they 
noted, “the model should be consistent with knowledge about the underlying 
scientific problem and the data collection process.” In assessment, this “knowledge” 
is knowledge about the domain of interest, specifying the (a) targeted knowledge, 
skills and abilities, (b) ways in which such knowledge, skills, and abilities are 
demonstrated in performance, and (c) characteristics of situations that provide the 
opportunity to observe such performance.  The Student Model, Evidence Models, 
and Task Models provide this information (Williamson, Bauer, Steinberg, Mislevy, & 
Behrens, 2003).   

The Probability Model 

 The Student Model contains unobservable variables characterizing examinee 
proficiency on the knowledge, skills, and abilities of interest.  For the ith examinee, let  

 ( )iPii θ,,1 Kθ=θ  (1) 

be the vector of P Student Model variables.  The complete Student Model for all 
examinees is denoted θ . 

 Task Models define those characteristics of a task that need to be specified.  
Such characteristics are expressed by Task Model variables; for task j, these variables 
are denoted by the vector 

 ( )jLjj YY ,,1 K=Y , (2) 

where L is the number of Task Model variables.  The full collection of Task Model 
variables is denoted Y . 

 The evaluation component of Evidence Models defines how to extract relevant 
features from an examinee’s response to a task (work products) to yield the values of 
observable variables.  Let 

 ( )jMjj XX ,,1 K=X  (3) 
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be the vector of M potentially observable variables for task j.  imjX  is then the value 

of observable m from the administration of task j to examinee i.  The complete 
collection of values of observable variables, that is, the values for all observables 
from all tasks for all examinees, is denoted as X .  As the focus of this paper is not on 
the generation of tasks from Task Models, nor is it on the extracting of observables 
from work products via the evaluation component of Evidence Models, let us 
assume these important procedures have been completed, providing us with a set of 
observables. 

 The BIN for the Student Model is a probability distribution for iθ .  An 

assumption of exchangeability results in a common prior distribution; that is, before 
any responses to tasks are observed the Student Model is in the same state for all 
examinees.  Beliefs about the expected values and associations among the Student 
Model variables are expressed through the structure of the model and higher level 
hyperparameters λ .  Thus, for all examinees,  

 ( )λθθ |~ ii P . (4) 

 The higher level parameters, λ , define the prior expectations.  In the absence of 
a strong theory regarding the prior distribution of examinee proficiencies, as is the 
case with NetPASS, these parameters should be set such that ( )λθ |iP  is vague.   

 For any given examinee, the statistical model defines how the observable 
variables, imjX , are dependent on that examinee’s values of the Student Model 

variables, iθ .  Let mjkπ  be the probability of responding to observable m from task j 

with a value of k.  The collection of these, for any particular observable, is then 

 ( )mjKmjmjmj ππππ ,,, 21 K= , (5) 

where K is the number of different values observable m from task j may take on.  mjπ  

is then the probability structure associated with observable m from task j, that is, the 
conditional probability of imjX  given iθ .  More formally, if  

 ( )iimjkimjmjk xXP θ|==π , (6) 

the distribution of the values for observable m from task j for examinee i is then 

 ( )mjiimjimj XPX π,|~ θ . (7) 

 In short, for any examinee, the distribution for the observables is defined by the 
values of the Student Model variables and the conditional distributions of 
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observables given Student Model variables.  Thus if we knew both the values of the 
Student Model variables and the conditional distribution of observables given 
Student Model variables, we would know the distribution of the observables.  Of 
course, in practice, the situation with the Student Model variables and the 
observables is reversed: We have values for the observables but not the Student 
Model variables; hence the use of Bayes theorem to reason from observations to 
Student Model variables.   

 When there are a large number of levels of Student Model variables and/or of 
the observables, there are a very large number of mjkπ ’s.  It may be the case that 

further structure exists for modeling the mjπ ’s.  More formally, we may express this 

as  

 ( )mjmjmj P ηππ |~ ,  (8) 

where mjη are higher level hyperparameters for observable m (e.g., characteristics of 

the appropriate Evidence Model and the task j from which m is obtained); prior 
beliefs about such parameters are expressed through higher level distributions, 
( )mjP η .  The complete set of conditional probability distributions for all Evidence 

Models for all observables is denoted π ; the complete set of parameters that define 
those distributions is denoted η . 

 The joint probability of all parameters can be expressed as 

 ( ) ( ) ( ) ( ) ( ) ( )πθηλXθηλπηλθληλXπθηλ ,,,|,,|,||,,,, PPPPPP ××××= . (9) 

 Taking advantage of the conditional independence relationships implied in eqs. 
(4)–(8), this expression can be simplified in light of additional knowledge and 
assumptions we bring to the assessment context, as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )πθXηπηλθλXπθηλ ,|||,,,, PPPPPP ××××= . (10) 

 In setting up the full model, our goal then becomes to specify the forms of the 
various terms in eq. (10).  We have already mentioned that we think of observable 
variables as conditional on Student Model variables.  In a complex assessment that 
includes multiple Student Model variables that are related, such as NetPASS, there 
is the need to model the dependencies among the Student Model variables.  Much of 
the discussion regarding modeling observables conditional on Student Model 
variables via the mjπ  terms can be extended to modeling Student Model variables as 

conditional on others via their own conditional probability distributions.  Before 
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turning to the specification of the Student Model in NetPASS, we introduce a more 
efficient manner for modeling conditional dependencies. 

Samejima’s Graded Response Model 

 One procedure for modeling the conditional probabilities of a variable given its 
parent is by directly estimating the probabilities themselves (Spiegelhalter, Dawid, 
Lauritzen, & Cowell, 1993).  This procedure quickly becomes unwieldy as the 
number of levels of the parent(s) or child increases.  We therefore seek a more 
efficient way to model the conditional probabilities.  We follow Mislevy et al. (2002) 
in exploiting experience from item response theory (IRT) for parsimonious ways of 
modeling conditional probabilities. 

The Graded Response Model 

 Typical models for modeling variables as conditional on other variables are IRT 
models.  Samejima’s Graded Response Model (GRM; 1969) can be used to model an 
ordinal polytomous outcome variable ijX .  For an observable variable ijX  that can 

take on any integral value from 1 to K define the probability that the response is in 
category k or above as 

 ))((logit)( -1
jkijij bakXP −=≥ θ , (11) 

for k=2,…,K, where jkb  is the location parameter associated with separating the kth 

from the k-1th category.  The probability of response being in the kth category is 

 )1()()( +≥−≥== kXPkXPkXP ijijij . (12) 

 These probabilities of response are thus functions of theta.  Figure 2 plots the 
probabilities of each response for any value of theta obtained from a GRM with 

1=ja and )2,2( +−=b .   

 Note the parsimony of the model.  For example, in order to model the 15-cell 
conditional probability table of a child variable that has three levels conditional on a 
parent that has five levels, only three parameters require estimation: the 
discrimination ja  and the two category boundaries contained in b . Though the 

GRM was introduced in terms of modeling a polytomous variable as conditional on 
a continuous variable (Samejima, 1969), the current application follows the use of the 
logistic function in modeling polytomous variables as dependent on a discrete 
variable (see, e.g., Formann, 1985; Formann & Kohlmann, 1998). 



 

10 

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

Theta

P(
X)

X=1 X=3

X=2

 

Figure 2. Response curves from the Graded Response IRT model with 1=a and )2,2( +−=b . 

Applications in NetPASS 

 The logic of the GRM can be extended to fit child variables with any number of 
categories.  When the GRM is employed to model observed responses in the 
Evidence Models, we will use a model with three categories, as there are three 
possible values (Low, Medium, High) for the observed variables.  Nothing in the 
GRM restricts its use to modeling observable variables on latent variables.  In 
NetPASS we also employ the GRM to model latent variables as conditional on other 
latent variables in the Student Model and in the Evidence Models.  In these cases, we 
will use a model with five categories, as latent variables can take on any of five 
possible values (Novice, Semester 1, Semester 2, Semester 3, Semester 4).  For 
another example of using an ordered polytomous IRT model to model latent 
variables, see Patz et al. (2002).     

 In all the instances in NetPASS, we will assume the category boundaries are 
equally spaced apart.  In this case, we need not estimate K–1 category boundaries, 
but just one location parameter creating an even more parsimonious representation 
(Andrich, 1982).  Future work may include releasing this additional constraint to 
allow for unequally spaced category boundaries. 



 

11 

The Effective Theta Method 

 The GRM, like most IRT models, is unidimensional: one variable, iθ , serves as 

the parent for the observables.  Complex assessments such as NetPASS involve 
many variables and, more importantly, conceptualize observables as being 
dependent on more than one variable.  Thus, we must either implement a 
multivariate IRT (e.g., Reckase, 1985) model or distill down the relationships 
between multiple parents and children to fit the unidimensional GRM.  We proceed 
with the latter strategy and take the following steps.  First, we adopt a set of 
parameters that will remain constant throughout, mja and mjb .  Next we seek to 

combine the parent variables in such a manner as to produce one variable that will 
serve in the unidimensional GRM; this variable is an “effective theta” denoted as 

**θ .  In IRT models, the conditional probabilities of response are determined by theta 

and the “item” parameters mja  and mjb .2  In fixing these parameters the conditional 

probabilities are then a function of the effective theta, which itself is a function of the 
parent variables.  Coefficients and intercepts in the calculation of the effective theta 
are akin to scale and location parameters in usual IRT formulations.  In essence, this 
is simply a shift in the estimation.  Typical IRT models posit an examinee’s latent 
trait(s) as being constant and estimate the items (in terms of mja  and mjb ) 

accordingly.  Instead, the effective theta method holds the scale constant (by fixing 

mja and mjb ) and estimates the examinee’s latent trait(s) with respect to each item.  

The impact of the item, in terms of both overall difficulty and association to 
examinee proficiencies, is part of the calculation of the effective theta.   

 The effective theta method brings two distinct advantages (Mislevy et al., 2002).  
First, the use of paradigmatic structures to characterize relationships among 
variables may be comforting to subject matter experts (SMEs), who while familiar 
with the domain and the structure of knowledge and therefore able to provide the 
form of relationships (e.g., “familiarity with either procedure A or B is sufficient,” or 
“once an examinee has skill A, performance becomes mainly a function of skill B,” 
etc.) may not feel comfortable specifying a complete conditional probability table.  
Second, unidimensional IRT models are quite popular in the psychometric 
community, and now the problem is on a scale familiar to experts in educational 

                                                 
2 For ease of exposition, we will continue to discuss the effective theta method in terms of items (i.e., 
an observable child variable).  As with the GRM, the effective theta method is not restricted to the 
case of observable child variables. 
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measurement.  Thus, they may feel more comfortable with capturing and modeling 
knowledge elicited from the SMEs.  For example, if experts believe that an item is 
easier than most or is very closely related to proficiency, we have a good idea about 
just what the values of the parameters should be.  Of course, these values are by no 
means fixed.  Our approach is to elicit initial opinions from SMEs, quantify them by 
assigning numerical priors, and then refine the values based on pretest data and 
pilot testing.   

Unidimensional Models 

 In the case where a variable, cθ , has one parent, 1θ , define the conditional 

probabilities as  

 ( )1|θθπ kP ck ==  (13) 

where, as before, k=1,…,K are the possible values of cθ .  We model the conditional 
probabilities, kπ  for k=1,…,K, via a projection, or mapping, function ( )1θg , which we 

then enter into the GRM.  A note about each of the mapping functions and the GRM 
is required.   

 As will be described below, the relationships between all of the variables in 
NetPASS are positive.  As illustrated in Figure 2, there is a positive monotonic 
relationship between theta and the response category: As theta increases, the 
probabilities of higher levels of response increase.  When constructing an effective 
theta from parent variables, the mapping function from the parent variable(s) to the 
effective theta should therefore be monotonic and positive.  

 Assuming the levels of 1θ  are roughly equally spaced apart, we code the values 
of 1θ  accordingly and define the effective theta via a linear function, ( )1θg , as the 

map: 

 ( ) dcg +×=≡ 11
** θθθ . (14) 

Note the simplicity of the model: There are two parameters to estimate, c and d , 
regardless of the number of states of the parent or the child.  The effective theta can 
be thought of intuitively as the combination of the parent variable 1θ  and the 

features of the conditional distribution, represented by c and d . 

 We have specified the structure of ( )kc θP πθ ,| 1  where the conditional 
probabilities, kπ , are defined by the parameters c and d .  In typical IRT models a 

and b parameters define the conditional probability distribution.  The constant 
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parameter, d , is akin to b in eq. (11) and is related to the average value for the child 
variable.  The slope parameter, c , is akin to a in eq. (11) and defines the strength of 
association between 1θ  and cθ .  Higher values of the slope parameter indicate a 

stronger association between the parent and child.  Higher values of the intercept 
parameter indicate that, on average, the value of the child is higher.3 The slope and 
intercept parameters capture the conditional distribution; estimation of the 
conditional probability distribution thus becomes the estimation of these 
parameters. 

Multidimensional Relationships 

 Consider the case where ( )Lθθ ,,1 K=θ ; we must now build a mapping 
function, ( )θtf , to project a vector of variables onto an effective theta. As 

generalizations of unidimensional models, two classes of multidimensional models 
are (a) combinations of linear mappings (e.g., compensatory relationships, discussed 
below) and (b) linear mappings of combinations (e.g., conjunctive relationships, 
discussed below).  Examples discussed will be restricted to those relationships that 
appear in NetPASS.  The reader interested in the quantification procedures for a 
number of other relationships is referred to Mislevy et al. (2002).   

The Application of the Effective Theta Method to the GRM 

 The effective theta method fixes the a  and b  parameters in the GRM and 
models an effective theta as a function of the examinee proficiency variables and 
parameters (the slopes and intercept) that define the conditional distribution.  When 
using the effective theta method and the GRM to model observed responses, we set 

1=a and )2,2( +−=b .  When using the effective theta method and the GRM to 
model values of latent variables, we set 1=a and )3,1,1,3( ++−−=b .  The 

conditional distributions are captured in the coefficients and intercepts of the 
equation for the effective theta.  The accurate modeling of the relationships in the 
Student Model and the Evidence Models and the estimation of these parameters 
constitute the calibration of the NetPASS assessment.  When the specific 
relationships in NetPASS are presented in the following sections, they will be 
illustrated with specific values for these parameters.   

                                                 
3 This marks a departure from more common formulations of IRT models where higher values of the 
intercept term indicate lower probabilities of the child taking on higher values; e.g., in more common 
binary IRT models (Hambleton & Swaminathan, 1985), higher b values indicate a more difficult item, 
with lower probabilities of correct response.  The notation used here is consistent with that of Bock’s 
(1972) slope-intercept form.  
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The Student Model 

Properties of Student Model Variables 

 The NetPASS Student Model, on the whole, aims to represent the knowledge, 
skills, and abilities that are important for success at CNAP.  The operational Student 
Model (Figure 1) also includes the specification of statistical relationships among 
variables.  All the variables described in this section are discrete, and can take on 
any of five values, couched in terms of CNAP’s four semester courses: complete 
Novice, Semester 1, Semester 2, Semester 3, and Semester 4, where the level 
indicates a student’s level on that particular aspect of the domain; these values are 
coded as 1-5, respectively.     

Quantitative Modeling of Relationships in the Student Model 

 In terms of the joint probability distribution (eq. (10)), the quantitative 
modeling of the relationships in the Student Model amounts to the specification of 
( )λθ |P .  Several relationships will be discussed, each followed by examples as they 

appear in NetPASS.  Where possible, the subscript identifying the variable will be 
abbreviated, that is, NDKθ  refers to Network Disciplinary Knowledge, NMθ  refers to 
Network Modeling, and NPθ  refers to Network Proficiency.      

 Direct dependence. With direct dependence, the value of the child is 
dependent on only one parent, which determines a probability distribution for the 
child.  We thus define the effective theta as a linear function of the lone parent 
variable: 

 1,11,
**

ccc dc +×≡ θθ   (15) 

where **
cθ  is the effective theta for the distribution of the child, and 1θ  is the parent.4 

 Examples from NetPASS. Discussions with SMEs revealed that the 
relationships between Design and Network Proficiency, Implement and Network 

Proficiency, and Troubleshoot and Network Proficiency may be modeled as direct 
dependence relationships. To obtain the effective theta for Design, instantiate eq. 
(15): 

  NPDesignNPNPDesignDesign dc ,,
** +×≡ θθ .  (16) 

                                                 
4 Though it may seem superfluous for simple equations, we will subscript the parameters (here 1,cc  

and 1,cd  with the child variable followed by the parent variable. 
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Effective thetas calculated for all possible values of Network Proficiency with NPDesignc ,  

= 2 and NPDesignd ,  = –5.8 and are given in Table 1.  The values for NPDesignc ,  and NPDesignd ,  

were chosen because when the resulting effective thetas are entered into the GRM to 
produce a conditional probability distribution (Table 1), the resulting distribution 
approximately matched the opinions and expectations of SMEs.  We will eventually 
estimate the value of NPDesignc ,  and NPDesignd , . Because using values of 2 and  –5.8 

results in the conditional distribution experts expect, our prior distributions for each 
parameter will be based on these values.   

 Similarly, to obtain the effective theta for Implement, instantiate eq. (15): 

 NPImplementNPNPImplementImplement dc ,,
** +×≡ θθ . (17) 

Table 2 displays effective thetas calculated for all possible values of Network 
Proficiency with NPImplementc ,  = 2 and NPImplementd ,  =  –6.2.  These values represent expert 

expectations and will serve as the basis for the prior distributions in the calibration.  
The resulting conditional probabilities are also given in Table 2.    Likewise, the 
effective theta for Troubleshoot is defined as: 

 NPotTroubleshoNPNPotTroubleshootTroublesho dc ,,
** +×≡ θθ  (18) 

Table 3 contains the conditional probabilities obtained with NPotTroubleshoc ,  = 2 and  

NPotTroubleshod ,  = –7.0. As before, these values for NPotTroubleshoc ,  and NPotTroubleshod ,  represent 

expert expectations and serve as the basis for the prior distributions in the 
calibration. 

Table 1 

Conditional Probability Table for Design 

   Pr (Design = k) 

Network 
Proficiency NPθ  **

Designθ  
 

Novice 
Semester 

1 
Semester 

2 
Semester 

3 
Semester 

4 

Novice 1 –3.8 0.689974 0.252701 0.049162 0.007050 0.001113 

Semester 1 2 –1.8 0.231475 0.458499 0.252701 0.049162 0.008163 

Semester 2 3 0.2 0.039166 0.192309 0.458499 0.252701 0.057324 

Semester 3 4 2.2 0.005486 0.033679 0.192309 0.458499 0.310026 

Semester 4 5 4.2 0.000746 0.004740 0.033679 0.192309 0.768525 

NPDesignNPNPDesignDesign dc ,,
** +×≡ θθ   )8.5(2** −+×≡ NPDesign θθ  
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Table 2 

Conditional Probability Table for Implement  

   Pr (Implement = k) 

Network 
Proficiency NPθ  **

Implementθ  
 

Novice 
Semester 

1 
Semester 

2 
Semester   

3 
Semester 

4 

Novice 1 –4.2 0.768525 0.192309 0.033679 0.004740 0.000746 

Semester 1 2 –2.2 0.310026 0.458499 0.192309 0.033679 0.005486 

Semester 2 3 –0.2 0.057324 0.252701 0.458499 0.192309 0.039166 

Semester 3 4 1.8 0.008163 0.049162 0.252701 0.458499 0.231475 

Semester 4 5 3.8 0.000746 0.004740 0.033679 0.192309 0.768525 

NPImplementNPNPImplementImplement dc ,,
** +×≡ θθ   )2.6(2** −+×≡ NPImplement θθ  

Table 3 

Conditional Probability Table for Troubleshoot 

   Pr (Troubleshoot = k) 

Network 
Proficiency NPθ  **

otTroubleshoθ  
 

Novice 
Semester

1 
Semester

2 
Semester 

3 
Semester

4 

Novice 1 –5.0 0.880797 0.101217 0.015514 0.002137 0.000335 

Semester 1 2 –3.0 0.500000 0.380797 0.101217 0.015514 0.002473 

Semester 2 3 –1.0 0.119203 0.380797 0.380797 0.101217 0.017986 

Semester 3 4 1.0 0.017986 0.101217 0.380797 0.380797 0.119203 

Semester 4 5 3.0 0.002473 0.015514 0.101217 0.380797 0.500000 

NPotTroubleshoNPNPotTroubleshootTroublesho dc ,,
** +×≡ θθ   )0.7(2** −+×≡ NPotTroublesho θθ  

 To illustrate how these prior estimates reflect expert expectations, compare the 
values in Table 3 to the values in Tables 1 and 2; for all values of Network Proficiency, 
the effective theta for Troubleshoot is always lower than the effective theta for 
Implement, which is always lower than the effective theta for Design.  As a result, for 
all values of Network Proficiency, the probability of high levels is lower for 
Troubleshoot than for Implement, which is lower than for Design.  This reflects SME 
expectation that Design is the easiest aspect of Network Proficiency to master, followed 
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by Implement, followed by Troubleshoot.5  Our expectation is that the level of Design 
will be higher than the level of Implement, which will be higher than the level of 
Troubleshoot.  But there are no mathematical constraints to force Design to be higher 
than Implement and Implement to be higher than Troubleshoot.  Should empirical 
evidence indicate otherwise, it is possible for this property of the conditional 
distributions to change. 

 Ceiling relationships. Ceiling relationships are not unlike direct dependence 
relationships: In both cases, one parent determines the probability distribution for 
the child variable.  The parent variable, or some transformation of it, sets the ceiling 
value for the child, which can take on any value at or below the ceiling.  The 
quantification of ceiling relationships is quite similar to that of direct dependence 
relationships.  Define the effective theta as a linear function of the lone parent 
variable: 

 1,11,
**

ccc dc +×≡ θθ . (19) 

 This effective theta is then entered into the GRM to produce a probability 
distribution for the values of the child.  These values do not represent the correct 
probability distribution of the child, for the GRM allows for the child to take on 
values higher than the ceiling.  We thus impose the ceiling structure and adjust the 
probability distribution accordingly by setting the probabilities for levels above the 
ceiling to 0 and renormalizing the remaining probabilities. 

 Examples from NetPASS.  Discussions with SMEs revealed that Network 

Modeling cannot be higher than Network Disciplinary Knowledge.  To obtain the 
effective theta for Network Modeling, instantiate eq. (19): 

 NDKNMNDKNDKNMNM dc ,,
** +×≡ θθ . (20) 

Table 4 contains the possible values for Network Disciplinary Knowledge, the values 
for the effective theta obtained with NDKNMc ,   = 2 and NDKNMd ,  = –8.0, and the 

probabilities that result from the GRM.  This distribution does not reflect the ceiling 
structure hypothesized by the SMEs.  This structure is imposed on the distribution 
by forcing probabilities for levels of Network Modeling above the level of Network 

Disciplinary Knowledge to 0 and renormalizing such that the conditional distributions;  

                                                 
5 The expected difference in the ability to acquire the cognitive skills of Design, Implement, and 
Troubleshoot is entirely captured by the change in the expected intercept parameter, as the coefficient 
used in compiling Tables 1-3 is unchanged. 
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Table 4 

Unstructured Conditional Probability Table for Network Modeling 

  Pr (Network Modeling = k)  
Network 

Disciplinary 
Knowledge NDKθ  **

NMθ  
 

Novice 
Semester 

1 
Semester 

2 
Semester   

3 
Semester 

4 

Novice 1 –6.0 0.952574 0.040733 0.005782 0.000788 0.000123 

Semester 1 2 –4.0 0.731059 0.221516 0.040733 0.005782 0.000911 

Semester 2 3 –2.0 0.268941 0.462117 0.221516 0.040733 0.006693 

Semester 3 4 0.0 0.047426 0.221516 0.462117 0.221516 0.047426 

Semester 4 5 2.0 0.006693 0.040733 0.221516 0.462117 0.268941 

NDKNMNDKNDKNMNM dc ,,
** +×≡ θθ    )0.8(2** −+×≡ NDKNM θθ  

that is, the rows in the table, sum to 1.  These corrected probabilities are given in 
Table 5.  Again, the values of the parameters in the model were selected to mimic 
expert expectation and will serve as the basis for the prior distribution for NDKNMc ,  

and NDKNMd ,  in the calibration of the model.   

 Baseline-ceiling relationships. Define a relationship that involves two parents: 
One parent sets a baseline value and the other serves in a compensatory relationship 
with the first parent to define the effective theta. In addition, the first parent variable 
imposes a ceiling relationship on the resulting probabilities. The procedures for 
defining baseline relationships and implementing ceiling relationships have already 
been presented.  A more complete explanation of compensatory relationships is 

Table 5 

Corrected Conditional Probability Table for Network Modeling 

  Pr (Network Modeling = k) 
Network 

Disciplinary 
Knowledge NDKθ   **

NMθ  
 

Novice 
Semester 

1 
Semester 

2 
Semester   

3 
Semester 

4 

Novice 1 –6.0 1.0 0 0 0 0 

Semester 1 2 –4.0 0.767456 0.232544 0 0 0 

Semester 2 3 –2.0 0.282331 0.485125 0.232544 0 0 

Semester 3 4 0.0 0.049787 0.232544 0.485125 0.232544 0 

Semester 4 5 2.0 0.006693 0.040733 0.221516 0.462117 0.268941 
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deferred until later; it should be sufficient for our purposes now to say that 
compensatory in this context refers to an additive model.   

 Example from NetPASS. Network Disciplinary Knowledge and Network Modeling 
serve as parents for Network Proficiency (Figure 1).  Discussions with SMEs revealed 
that Network Proficiency cannot be higher than Network Disciplinary Knowledge and 
that Network Proficiency is expected to be higher then Network Modeling, though it is 
possible for the latter to be higher than the former.  Furthermore, Network 

Disciplinary Knowledge is the primary contributing factor to Network Proficiency and 
Network Modeling is a secondary factor, with Network Disciplinary Knowledge 
essentially serving as a prerequisite and Network Modeling serving as an additional 
compensatory variable.  Therefore, a baseline based on Network Disciplinary 

Knowledge is used and then adjusted based on the value of Network Modeling. 

 Define the baseline theta as a linear transformation of Network Disciplinary 

Knowledge as 

 baselineNPNDKbaselineNPNP dc ,,
* +×≡ θθ . (21) 

Define the effective theta as  

 )]1([,
*** −−+≡ NDKNMrycompensatoNPNPNP c θθθθ . (22)  

The term in the brackets represents how much Network Modeling contributes above 
Network Disciplinary Knowledge.  When Network Modeling is one level below Network 

Disciplinary Knowledge (as it is expected to be, as shown in Table 5), the contribution 
is 0.  When Network Modeling is equal to Network Disciplinary Knowledge, the 
contribution is equal to the value of rycompensatoNPc , .  When Network Modeling is two or 

more levels below Network Disciplinary Knowledge, the contribution is negative.  The 
possible combinations of Network Disciplinary Knowledge and Network Modeling and 
the resulting effective thetas with baselineNPc ,  = 2, baselineNPd ,  = –6.0, and rycompensatoNPc ,  = 1 

are given in Table 6.  The effective theta obtained from eq. (22) is then entered into 
the GRM to obtain the conditional probability distribution for Network Proficiency, 
also given in Table 6.  As with the previous ceiling relationship, the GRM itself does 
not retain the ceiling structure; the ceiling is imposed by setting all probabilities for 
levels of the child greater than the level of Network Disciplinary Knowledge to 0 and 
renormalizing the probabilities.  The corrected probability distributions are given in 
Table 7.  Again, the values of baselineNPc , , baselineNPd , , and rycompensatoNPc ,  reflect expert  
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Table 6 

Unstructured Conditional Probability Table for Network Proficiency 

    Pr (Network Proficiency = k)  
Network 

Disciplinary 
Knowledge NDKθ  

Network 
Modeling NMθ  **

NPθ  
 

Novice 
Semester

1 
Semester 

2 
Semester

3 
Semester

4 

Novice 1 Novice 1 –3 0.500000 0.380797 0.101217 0.015514 0.002473 

Semester 1 2 Novice 1 –2 0.268941 0.462117 0.221516 0.040733 0.006693 

Semester 1 2 Semester 1 2 –1 0.119203 0.380797 0.380797 0.101217 0.017986 

Semester 2 3 Novice 1 –1 0.119203 0.380797 0.380797 0.101217 0.017986 

Semester 2 3 Semester 1 2 0 0.047426 0.221516 0.462117 0.221516 0.047426 

Semester 2 3 Semester 2 3 1 0.017986 0.101217 0.380797 0.380797 0.119203 

Semester 3 4 Novice 1 0 0.047426 0.221516 0.462117 0.221516 0.047426 

Semester 3 4 Semester 1 2 1 0.017986 0.101217 0.380797 0.380797 0.119203 

Semester 3 4 Semester 2 3 2 0.006693 0.040733 0.221516 0.462117 0.268941 

Semester 3 4 Semester 3 4 3 0.002473 0.015514 0.101217 0.380797 0.500000 

Semester 4 5 Novice 1 1 0.017986 0.101217 0.380797 0.380797 0.119203 

Semester 4 5 Semester 1 2 2 0.006693 0.040733 0.221516 0.462117 0.268941 

Semester 4 5 Semester 2 3 3 0.002473 0.015514 0.101217 0.380797 0.500000 

Semester 4 5 Semester 3 4 4 0.000911 0.005782 0.040733 0.221516 0.731059 

Semester 4 5 Semester 4 5 5 0.000335 0.002137 0.015514 0.101217 0.880797 

baselineNPNDKbaselineNPNP dc ,,
* +×≡ θθ    )]1([,

*** −−+≡ NDKNMrycompensatoNPNPNP c θθθθ  

)6(2* −+×≡ NDKNP θθ      )]1()[1(*** −−+≡ NDKNMNPNP θθθθ  
 
 

opinions regarding the conditional probability distribution and will serve as the 
basis for the prior distributions. 

 Exogenous variable. Network Modeling, Network Proficiency, Design, Implement, 
and Troubleshoot were all modeled as conditional on some other parent variable(s).  
To complete the specification of the Student Model, the lone exogenous variable, 
Network Disciplinary Knowledge, must also be specified.  As NetPASS is intended to 
assess third-semester students in the CNAP sequence, experts posited that the 
majority of examinees would be on the level of third-semester students.  Slightly 
fewer would be on the level of second-semester students.  Since it is possible for 
examinees to be ahead of pace, there might be some operating on the level of fourth- 
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Table 7 

Corrected Conditional Probability for Network Proficiency 

    Pr (Network Proficiency = k)  
Network 

Disciplinary 
Knowledge NDKθ  

Network 
Modeling NMθ  **

NPθ  
 

Novice 
Semester

1 
Semester 

2 
Semester

3 
Semester

4 

Novice 1 Novice 1 –3 1.0 0 0 0 0 

Semester 1 2 Novice 1 –2 0.36788 0.63212 0 0 0 

Semester 1 2 Semester 1 2 –1 0.23840 0.76160 0 0 0 

Semester 2 3 Novice 1 –1 0.13534 0.43233 0.43233 0 0 

Semester 2 3 Semester 1 2 0 0.06487 0.30301 0.63212 0 0 

Semester 2 3 Semester 2 3 1 0.03597 0.20243 0.76160 0 0 

Semester 3 4 Novice 1 0 0.04979 0.23254 0.48513 0.23254 0 

Semester 3 4 Semester 1 2 1 0.02042 0.11491 0.43233 0.43233 0 

Semester 3 4 Semester 2 3 2 0.00916 0.05572 0.30301 0.63212 0 

Semester 3 4 Semester 3 4 3 0.00495 0.03103 0.20244 0.76159 0 

Semester 4 5 Novice 1 1 0.01799 0.10122 0.38080 0.38080 0.11920 

Semester 4 5 Semester 1 2 2 0.00669 0.04073 0.22152 0.46212 0.26894 

Semester 4 5 Semester 2 3 3 0.00247 0.01551 0.10122 0.38080 0.50000 

Semester 4 5 Semester 3 4 4 0.00091 0.00578 0.04073 0.22152 0.73106 

Semester 4 5 Semester 4 5 5 0.00034 0.00214 0.01551 0.10122 0.88079 

semester students; conversely, it is also possible that students might be quite behind, 
and it is even possible that some might be operating at the level of a first-semester 
student or even that of a complete novice.  Using an effective theta value of .6 results 
in an appropriate distribution, which is given in Table 8.  Since this variable is not 
posited to be conditional on any other in the model, it was modeled using a Dirichlet 
distribution in the manner described by Spiegelhalter et al. (1993). To model a 
variable in this way, a vector, e, is defined with pseudocounts of examinees.  For 
example, with e containing the values .1477, .8498, 3.5042, 4.0798, and 1.4185, define 
Network Disciplinary Knowledge to be distributed as a Dirichlet distribution with 
parameters contained in e.  In essence, the values in e serve as pseudocounts of 
examinees; the distribution for Network Disciplinary Knowledge is one that would be 
empirically obtained if we observed examinees in the relative frequencies defined in 
Table 8.  Since we desire to have vague prior distributions, we define the  
pseudocounts accordingly.  Operationally, this is accomplished by setting the values 
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Table 8 

Probability Table for Network Disciplinary Knowledge 

Pr (Network Disciplinary Knowledge = k) 

Novice 
Semester  

1 
Semester  

2 
Semester  

3 
Semester 

4 

.01477 .08498 .35042 .40798 .14185 

in e to sum to 10.  Thus, we have modeled the prior distribution for Network 

Disciplinary Knowledge as if we observed the relative frequencies in Table 8 but on a 
sample of size 10 (Spiegelhalter et al., 1993). 

Summary 

 In the preceding sections section we have quantitatively specified the variables 
in the Student Model.  In terms of the joint probability distribution in eq. (10), we 
have specified most of the ( )λθ |P  and hinted at the ( )λP terms.6  )|( λθP refers to the 
distribution of the Student Model variables, whereas )(λP refers to the distribution 

of the parameters that define the distribution of the Student Model variables.  In 
terms of the effective theta method, θ are the Student Model variables themselves 
and λ  consists of  

• the various c, and d parameters used to define the distributions of Network 
Modeling, Network Proficiency, Design, Implement, and Troubleshoot; and 

• e parameters used to define the distribution of Network Disciplinary 
Knowledge. 

In order to enact a fully Bayesian model, distributions the various c and d 
parameters will need to be specified.  This discussion is deferred until after the 
description of the modeling of the relationships in the Evidence Models.  

Evidence Models 

Qualitative Description of the Evidence Models 

 NetPASS consists of three distinct types of Evidence Models, each 
corresponding to a different aspect of Network Proficiency: Design, Implement, and 

                                                 
6 When we further elaborate on the Evidence Models, we will see that there will be several more 
variables that might be thought of as being components of the ( )λθ |P  and the ( )λP .  See note 12.  
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Troubleshoot.  A pictorial representation of a Design Evidence Model is given in 
Figure 3.  The Network Disciplinary Knowledge and Design variables are those defined 
in the Student Model; definitions of the others follow.  DK and DesignE represents 
the combination of the two Student Model variables involved in this Evidence 
Model.  DK and DesignE is not itself of inferential interest; it serves to link the 
Student Model variables to the observable; such an “instrumental” variable is 
defined for convenience during modeling.  Correctness of OutcomeE and Quality of 

RationaleE are the two observable variables in this Evidence Model.  The two 
observables are shown as dependent on DK and DesignE.  As noted above, 
conditional independence is a key concept in BINs.  Achieving conditional 
independence is required to achieve the computational simplicity of eq. (10).  Now 
the observable variables are not conditionally independent.  Their dependence is in 
part due to their mutual dependence on DK and DesignE; however they may be 
dependent in another way.  Both of these variables were formed from the same task: 
one task was presented to an examinee, who in turn responded to this task with a 
work product, which was then submitted to the evaluation component of the 
Evidence Model to form the two observables we now see in the model.  Since both 
observables come from the work product to a common task, there may be a 
dependency between the variables due to the task, not due to the parent variable DK 

and DesignE.  We therefore introduce a context variable, Design ContextE, meant to 
account for this possible (construct irrelevant) dependency. Note that the 
distribution for Design ContextE, the square to the left of the node in Figure 3, has no 
directed edges flowing into it meaning that the distribution of Design ContextE is not 
a conditional distribution; Design ContextE is an exogenous variable. The two 
parents, DK and DesignE and Design ContextE, represent distinct and independent 
portions of the dependency between Correctness of OutcomeE and Quality of  

Figure 3. A Design Evidence Model. 

Design(SM) 

Networking Disciplinary Knowledge(SM) 

DK and DesignE

Design ContextE 

Correctness of OutcomeE (OB)

Quality of RationaleE (OB) 
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RationaleE.  The observables are conditionally independent only given both parents.  
Figure 3 represents a complete Design Evidence Model where the observables are 
both (a) modeled in relation to Student Model variables, and (b) conditionally 
independent given their parents. This method of modeling conditional dependencies 
among related observables has also been implemented in the context of IRT by 
Bradlow, Wainer, and Wang (1999). 

 An Implement Evidence Model is depicted in Figure 4.  The definitions of these 
variables are analogous to their counterparts defined above for the Design Evidence 
Model.  In addition to the data used to form the first three observables, the work 
products examinees produce in response to the task contain information regarding 
other Student Model variables.  More specifically, the work products examinees 
produce in response to this task lead to another observable dependent on Network 

Disciplinary Knowledge and Network Modeling. This portion of the Implement 
Evidence Model is depicted in the lower part of Figure 4. Network Disciplinary 

Knowledge and Network Modeling combine to yield DK and Network ModelingE, which 
is the parent of an observable, Correctness of Outcome 2E.  DK and Network ModelingE 

is structured in exactly the same way as DK and ImplementE, except Network Modeling 
joins Network Disciplinary Knowledge as a parent, replacing Implement. 

 Note that all the observables have Implement ContextE as one parent.  Again, 
this is because all the observables are formed from the same work product from one 
task, and therefore might have dependencies among them above and beyond that 
which can be attributable to either DK and ImplementE or DK and Network ModelingE.  
A Troubleshoot Evidence Model is depicted in Figure 5. Its interpretation is 
analogous to the Implement Evidence Model.   

Figure 4.  An Implement Evidence Model. 

Implement/Configure(SM) 

Networking Disciplinary Knowledge(SM) 

DK and ImplementE

Implement ContextE 

Efficiency of ProcedureE(OB) 

Correctness of OutcomeE(OB)

Correctness of ProcedureE(OB)

Network Modeling(SM) DK and Network ModelingE Correctness of Outcome2E(OB) 
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Figure 5.  A Troubleshoot Evidence Model. 

 We have so far mentioned the different types of Evidence Models: Design, 
Implement, and Troubleshoot.  There are three different instantiations of each type, 
corresponding to the expected difficulty of the task presented to the examinee.  For 
instance there are Design Easy, Design Medium, and Design Hard instantiations, 
which use observables extracted from Design Easy, Design Medium, and Design 
Hard tasks, respectively. It is a bit premature to refer to a task as easier or more 
difficult than any other. After all, the goal is to calibrate the model and gain 
information on the difficulties of the tasks. The terms “Easy,” “Medium,” and 
“Hard” capture expert expectation, as the tasks were constructed to be of different 
difficulties.  These expectations are effected in the prior distributions for the c and d 
parameters associated with these tasks, but evidence in the form of student 
performances will be able to alter, even reverse, these orderings if warranted.  

 For each instantiation of each type of Evidence Model there will be the 
appropriate “instrumental” variable (i.e., the combination of Network Disciplinary 

Knowledge and another Student Model variable) and the appropriate context 
variable, each localized to the particular instance of the particular Evidence Model.7  

                                                 
7 The names of all of the “instrumental” variables, context variables, and observables in Figures 3, 4, 
and 5 ended with “E,” indicating that these instantiations were the Design Easy, Implement Easy, 
and Troubleshoot Easy instantiations, respectively.   

Troubleshoot(SM) 

Networking Disciplinary Knowledge(SM) 

DK and TroubleshootE

Troubleshoot ContextE 

Efficiency of ProcedureE(OB) 

Correctness of Outcome2E(OB)

Correctness of ProcedureE(OB)

Network Modeling(SM) DK and Network Modeling2E Correctness of Outcome3E(OB) 

Correctness of Outcome1E(OB)
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Quantitative Modeling of Specific Relationships in the Evidence Models 

 Conjunctive relationships. Conjunctive relationships are those in which 
multiple skills are required for performance. In terms of BINs, this amounts to 
modeling the relationship as such: for a child to reach certain values, all of its 
parents must have (at least) that value.  Mathematically, this is a minimum function; 
the minimum value of the parents sets the value for the child.  When using a formal 
conjunction (i.e., minimum) function to define the effective theta, using the GRM 
will yield a probability distribution for all the possible values.  These values do not 
represent the probability distribution of the child, for, as in the ceiling relationships, 
in using the GRM the structure of the conjunction is lost; the GRM allows for the 
child to take on values higher than the minimum of the parents.  The conjunctive 
structure, that is, the ceiling value, is thus subsequently imposed the probability 
distribution is adjusted accordingly.   

 Basic formulas. Let 1θ and 2θ be parent variables for a child variable cθ ; 
furthermore, let 1θ , 2θ , and cθ take on any of five possible states.  Define 

 ( )21
* ,min θθθ ≡c  (23) 

Define a linear transformation of *
cθ

θ :      

 ( ) ** ,
*

,
***

cc cccccc dcu
θθ

θθθ +×=≡  (24) 

 Entering this value into the GRM would lead to a probability distribution for 
the possible values of cθ  which would then be adjusted so that the value of cθ  could 

not exceed the ceiling, defined in eq. (23).  This would be a model of a “leaky” 
conjunction.8  However, it may be the case in a leaky conjunction that the expected 
value of the child is not merely a function of the minimum value of the parents, but 
may also depend on which parent sets the minimum and what the value of the other 

parent is.  Thus, a more complete definition of the effective theta would be:   

 )]([)]([][ *
2,

*
1,,

*
,

**
21** cccccccc ccdc

cc
θθθθθθ θθθθ

−×+−×++×≡ , (25) 

where the contents of the first set of brackets is just that defined in eq. (24), the 
contents of the second set of brackets captures the impact of how high above the 

                                                 
8 The term “leaky” is used to indicate that though the value of the child has a ceiling at the minimum 
of its parents, probabilities “leak” below the ceiling, meaning that it is possible for the child to take 
on a value below the ceiling. 
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minimum 1θ is, and the contents of the third set of brackets captures the impact of 
how high above the minimum 2θ is.9   

 Once the effective theta is obtained, it is entered into the GRM to obtain a 
probability distribution for the value of the child.  The GRM will return probabilities 
for all possible values, even those outlawed by the leaky conjunction, that is, those 
above *

cθ .  To fix this, we force the probabilities for the values above *
cθ to be 0 and 

renormalize the others.  Let us illustrate this by turning to NetPASS. 

 Examples from NetPASS. Consider again the Design Easy Evidence Model, 
depicted in Figure 3.  DK and DesignE is formed by a leaky conjunction of Network 

Disciplinary Knowledge and Design.  Thus to calculate the effective theta first 
instantiate equation (23): 

 ( )DesignNDKnDKandDesig θθθ ,min* ≡ .  (26) 

Next instantiate eq. (25) to calculate the effective theta: 

 

)]([

)]([

][

*
,

*
,

,
*

,
**

**

nDKandDesigDesignDesignnEDKandDesig

nDKandDesigNDKNDKnEDKandDesig

nEDKandDesignDKandDesignEDKandDesignEDKandDesig

c

c

dc
nDKandDesignDKandDesig

θθ

θθ

θθ
θθ

−×+

−×+

+×≡

 (27) 

 These effective thetas are entered into the GRM to produce probabilities for the 
child, DK and DesignE.  Again, using the GRM as such will result in possible values 
for the child above the minimum of the parents.  These probabilities must be set to 
zero and the rest of the probabilities in each case (i.e., each row in the table) must be 
renormalized.  Table 9 illustrates the correct structure of the probabilities. 

 The values listed in Table 9 were calculated using eq. (27) with 
*, nDKandDesignEDKandDesigc

θ  = 2, *, nDKandDesignEDKandDesigd
θ  = –6.0, NDKnEDKandDesigc ,  = .2, and DesignnEDKandDesigc ,  

= .4 to reflect the opinions and expectations of SMEs.  SMEs hypothesized that the 
impact of Design was greater than that of Network Disciplinary Knowledge.  This is 

                                                 
9 Let us suppose that 1θ < 2θ .  In that case, *

cθ would be 1θ  and the value in the second set of 

brackets would be 0.  However, the third set of brackets would contribute to the value of **
cθ .  If 

2θ < 1θ , the situation would be reversed.  In the case where the values of the parents are equal (and 
hence, both parents equal the minimum), the contribution of both brackets would be 0. 
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modeled by having the value of DesignnEDKandDesigc ,  be greater than NDKnEDKandDesigc , .10  As 

with the parameters in the Student Model, no mathematical constraints have been 
placed on the values; SME expectations serve as the basis for our prior distributions 
for the parameter to be refined by the information in the data.   

 The DK and DesignE variable in the Design Easy instance is not of inferential 
interest; it serves the purpose of capturing the structure of the relationship between 
the Student Model variables and the observables in the Evidence Model.  This 
“instrumental” variable is modeled in the Design Medium and Design Hard 
instances in exactly the same way.  That is, 
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and 
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are the effective thetas for DK and DesignM and DK and DesignH, respectively.11  By 
construction, SME expectations for the parameters in these equations match those 
defined in the effective theta equation for DK and DesignE; the expected conditional 
probabilities for DK and DesignM and DK and DesignH are therefore just those given 
in Table 9. 

                                                 
10 This can be illustrated in much the same way as the expected difference between Design, 
Implement, and Troubleshoot. 
11 Note that we need not compute counterparts of eq. (23) for the Design Medium and Design Hard 
instances, as the minimum of the Student Model variables, DKθ  and Designθ , does not change from 

instance to instance. 
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Table 9 

Conditional Probability Table for Network Disciplinary Knowledge and DesignE 

 Pr (Network Disciplinary Knowledge and DesignE = k)  
Network 

Disciplinary 
Knowledge 

 
Design 

 
Novice 

Semester
1 

Semester
2 

Semester 
3 

Semester
4 

Novice Novice 1.0 0 0 0 0 

Novice Semester 1 1.0 0 0 0 0 

Novice Semester 2 1.0 0 0 0 0 

Novice Semester 3 1.0 0 0 0 0 

Novice Semester 4 1.0 0 0 0 0 

Semester 1 Novice 1.0 0 0 0 0 

Semester 1 Semester 1 0.36788 0.63212 0 0 0 

Semester 1 Semester 2 0.30638 0.69362 0 0 0 

Semester 1 Semester 3 0.25799 0.74201 0 0 0 

Semester 1 Semester 4 0.22159 0.77841 0 0 0 

Semester 2 Novice 1.0 0 0 0 0 

Semester 2 Semester 1 0.33548 0.66452 0 0 0 

Semester 2 Semester 2 0.06487 0.30301 0.63212 0 0 

Semester 2 Semester 3 0.05002 0.25636 0.69362 0 0 

Semester 2 Semester 4 0.03980 0.21819 0.74201 0 0 

Semester 3 Novice 1.0 0 0 0 0 

Semester 3 Semester 1 0.30638 0.69362 0 0 0 

Semester 3 Semester 2 0.05676 0.27872 0.66452 0 0 

Semester 3 Semester 3 0.00916 0.05572 0.30301 0.63212 0 

Semester 3 Semester 4 0.00696 0.04306 0.25636 0.69362 0 

Semester 4 Novice 1.0 0 0 0 0 

Semester 4 Semester 1 0.28058 0.71942 0 0 0 

Semester 4 Semester 2 0.05002 0.25636 0.69362 0 0 

Semester 4 Semester 3 0.00795 0.04881 0.27872 0.66452 0 

Semester 4 Semester 4 0.00091 0.00578 0.04073 0.22152 0.73106 

( )DesignNDKnDKandDesig θθθ ,min* ≡  

)]([

)]([][
*

,

*
,,

*
,

**
**

nDKandDesigDesignDesignnEDKandDesig

nDKandDesigNDKNDKnEDKandDesignEDKandDesignDKandDesignEDKandDesignEDKandDesig

c

cdc
nDKandDesignDKandDesig

θθ

θθθθ
θθ

−×+

−×++×≡

)](4[.)](2[.)]0.6(2[ *****
nDKandDesigDesignnDKandDesigNDKnDKandDesignEDkandDesig θθθθθθ −×+−×+−+×≡  
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 Turning to the Implement Evidence Models, the specification of DK and 

ImplementE and DK and Network ModelingE in the Implement Easy instance, DK and 

ImplementM and DK and Network ModelingM in the Implement Medium instance, 
and DK and ImplementH and DK and Network ModelingH in the Implement Hard 
instance mirrors that of their counterparts in the Design Evidence Models, save for 
which variables are the parents.  That is, to obtain the effective thetas first instantiate 
eq. (23): 

 ( )ImplementNDKmentDKandImple θθθ ,min* ≡  (30) 

  ( )NMNDKDKandNM θθθ ,min* ≡ . (31) 

The effective thetas for the Implement Easy instance are defined as: 
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and  
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    . (33) 

The effective thetas for the Implement Medium instance are defined as: 
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and 
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 The effective thetas for the Implement Hard instance are defined as: 
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and 
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 As in the Design Evidence Models, these effective thetas must be entered into 
the GRM, impossible states must be zeroed out, and the remaining probabilities 
must be renormalized.  Discussions with SMEs indicated that the values of the 
parameters that define the effective thetas in the equations above are expected to be 
the same as their counterparts in the Design Evidence Model instances; the 
conditional probabilities based on this expectation are therefore those given in Table 
9.   

 Modeling the DK and Troubleshoot and DK and NM2 variables for the three 
instantiations of the Troubleshoot evidence model follows exactly that of modeling 
DK and Implement and DK and NM and hence will not be discussed further.  As 
before, the expected conditional probabilities for these instrumental variables in the 
Troubleshoot evidence models are given in Table 9.   

 Compensatory relationships. A common method for modeling compensatory 
relationships is weighted sums or averages, as in multiple factor analysis 
(Thurstone, 1947).  When modeling a compensatory relationship, one’s first 
inclination may be to simply sum up the linear mappings for each parent variable to 
the child.  More formally, if the marginal contribution of lth parent variable lθ  is the 

linear mapping function 

 ( ) lcllcllclc dcg ,,,
*
, )( +×=≡ θθθ  (38) 

then the combination all L linear mapping functions would be 

 ( ) ∑
=

=≡
L

l
lcLcctt h

1

*
,

*
,

*
1,

** ,, θθθθ K . (39) 

The particular advantage of this strategy is that the relevance of each of the requisite 
skills can be assessed (Mislevy et al., 2002).  This feature, which is advantageous 
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when information regarding each of the separate skills is available from either 
experts and/or features of the tasks, is also problematic in that, given response data 
alone, the model is usually underdetermined, as the sum of the intercepts, but not 
their individual values, is identified (Mislevy et al., 2002).  However, in the case of 
NetPASS, all of the compensatory relationships in NetPASS involve a context 
variable, the impact of which can be modeled without encountering problems of 
underdetermination, as discussed below.  

 Basic formulas. Let 1θ  be a parent variable for T observables TXX ,,1 K ;12 
furthermore, let 1θ  be one of the instrumental variables defined above and take on 
any of five states.  Let 2θ  be a context variable that will also serve as a parent 
variable for the T observables TXX ,,1 K ; let this context variable take on any of two 

states, corresponding to values of High and Low.  Following the discussion of the 
previous section, the marginal contribution of 1θ  to the tth observable is  

 ( ) 1,11,11,
*
1, )( tttt dcg +×=≡ θθθ  (40) 

and the marginal contribution of 2θ is given as  

 ( ) )()( 22,2,22,22,
*

2, θθθθ ×=+×=≡ ttttt cdcg . (41) 

Note that 2,td  has been dropped on the right side of eq. (41).  This occurs because if 

the two-level context variable is centered around 0 (e.g., with Low coded as –1 and 
High coded as +1), 2,tc  captures all the information and 2,td is unnecessary.  To 

specify the expression for the effective theta, instantiate eq. (39): 

 ( ) 1,22,11,
*** )()( ttttltt dcch +×+×=≡ θθθθ . (42) 

 We can think of the compensatory relationship that involves a context variable 
as simply the sum of the marginal values *

1,tθ  and *
2,tθ , the impact of 1θ  followed by 

the additional impact of the context variable, 2θ .  For a slightly different approach to 

developing a compensatory relationship, from the perspective of moving from a 
conditionally dependent model to a conditionally independent model, see Mislevy 
et al. (2002). 

 Examples from NetPASS. Each instance of a Design Evidence Model contains 
two observables obtained from work products produced in response to a common 

                                                 
12 As compensatory relationships only appear in NetPASS in the modeling of observables, we refer 
to the child variables as observables; naturally, there is nothing about compensatory relationships 
that requires the child variables be observable. 
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task.  The DK and Design variable in each instance can take on any of five values 
corresponding to Novice, Semester 1, Semester 2, Semester 3, and Semester 4, coded 
as 1-5.  The Design Context variable in each instance can take on either of two values, 
Low or High, which are coded as –1 and +1, respectively.13  To obtain the effective 
theta for the tth observable in the Design Easy instance, instantiate eq. (42)  

 nEDKandDesigtextEDesignContextEDesignConttnEDKandDesignEDKandDesigtt dcc ,,,
** )()( +×+×= θθθ . (43) 

 Table 10 is a table of initial conditional probability distributions for the 
observables in the Design Easy Evidence Model.  These were calculated by 
evaluating eq. (43) with nEDKandDesigtc ,  = 2, nEDKandDesigtd ,  = –5.0, extEDesignConttc ,  = .4, and 

reflect the opinions and expectations of the SMEs; these values serve to define the 
prior distributions for the calibration of the model. 

Table 10 

Conditional Probability Table for the Observables in the Design Easy Evidence Model 

     Pr (X = k) 

 
DKandDesignE nEDKandDesigθ  

Design 
ContextE extEDesignContθ **

tθ  
 

Low 
 

Medium 
 

High 

Novice 1 Low –1 –1.7 0.802184 0.193320 0.004496 

Novice 1 High 1 –1.3 0.645656 0.344392 0.009952 

Semester 1 2 Low –1 –0.7 0.354344 0.613361 0.032295 

Semester 1 2 High 1 –0.3 0.197816 0.733045 0.069138 

Semester 2 3 Low –1 0.3 0.069138 0.733045 0.197816 

Semester 2 3 High 1 0.7 0.032295 0.613361 0.354344 

Semester 3 4 Low –1 1.3 0.009952 0.344392 0.645656 

Semester 3 4 High 1 1.7 0.004496 0.193320 0.802184 

Semester 4 5 Low –1 2.3 0.001359 0.067780 0.930862 

Semester 4 5 High 1 2.7 0.000611 0.031685 0.967705 

nEDKandDesigtextEDesignContextEDesignConttnEDKandDesignEDKandDesigtt dcc ,,,
** )()( +×+×= θθθ  

)0.5()(4.)(2** −+×+×= extEDesignContnEDKandDesigt θθθ  

                                                 
13 Though they are being specified as part of the Evidence Models, the instrumental variables 
representing the combination of two Student Model variables and the Context variables are all 
indexed by examinees (and appear as parent variables in the calculation of the effective thetas for 
observables).  As such they may be thought of as Student Model variables (i.e., latent variables 
modeled as being part of examinees), though the procedure adopted here is equivalent. 
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 The compensatory relationship appears repeatedly in the NetPASS model.  We 
have so far mentioned the Design Easy instance.  The Design Medium and Design 
Hard instances have the same structure, though we have the ability to quantitatively 
define the expected difference in difficulty by a change in the intercept parameter.  
Define the effective theta for the tth observable in the Design Medium instance to be  

 nMDKandDesigtextMDesignContextMDesignConttnMDKandDesignMDKandDesigtt dcc ,,,
** )()( +×+×= θθθ . (44) 

Define the effective theta for the tth observable in the Design Hard instance to be 

 nHDKandDesigtextHDesignContextHDesignConttnHDKandDesignHDKandDesigtt dcc ,,,
** )()( +×+×= θθθ . (45) 

 The expected difference in difficulty between the scenarios is captured in the 
expectation in the intercept terms: for the Design Easy instance, nEDKandDesigtd ,  = –5.0; 

for the Design Medium instance, nMDKandDesigtd ,  = –6.0; for the Design Hard instance, 

nHDKandDesigtd ,  = –7.0.14  The expected strength of association between the observables 

and (both of) the parent variables remains unchanged; that is, the coefficients in the 
Design Medium and Design Hard scenarios are expected to be equal to their 
counterparts in the Design Easy scenario.  Tables 11 and 12 give the conditional 
probabilities of response for the Design Medium and Design Hard instances, 
respectively.  Again, the values used to calculate the expert expectations will serve 
as the basis for the priors in estimating the parameters in the model.    

 Consider now the Implement Evidence Model given in Figure 4.  Like the 
Design Evidence Model, there are three instantiations of the Implement Evidence 
Model: Easy, Medium, and Hard.  With more observables and more parent 
variables, the Implement Evidence Models are slightly different than the Design 
Evidence Models.  Fundamentally, however, they are the same; for each observable 
there are two parents: One is the combination of two Student Model variables (that 
can take on any of five values) and the other is a context variable (that can take on 
either of two values) designed to account for the common origin of the observables 
and induce conditional independence.  Calculating the conditional probabilities for 
an Implement Evidence Model consists of simply repeating the procedure for setting 
up a Design Evidence Model twice; we calculate two effective thetas instead of one.  
Furthermore, the anticipated values for the coefficients and intercepts in the 
calculation of both effective thetas in the various instances of the Implement 

                                                 
14 For an explanation, see note 4 and the discussion it concerns.  
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Evidence Model are hypothesized to be equal to those in the corresponding 
instances of the Design Evidence Model.  The same can be said for modeling the 
observables in the Troubleshoot Evidence Models.  For the first three observables in 
the Implement Easy instance, we define the effective theta as  

 
mentEDKandImpletontextEImplementContextEImplementCt

mentEDKandImplementEDKandImplett

dc
c

,,

,
**

)(
)(
+×+

×=

θ

θθ
 .  (46) 

For the last observable in the Implement Easy instance, we define the effective theta 
as 

 DKandNMEtontextEImplementContextEImplementCtDKandNMEDKandNMEtt dcc ,,,
** )()( +×+×= θθθ  (47) 

where the coefficients and the intercepts in the expressions above are expected to 
take on the same values as those listed for the observables in the Design Easy 
instance above.  The expected conditional probabilities for the observables in the 
Implement Easy instance are just those given in Table 10.    

Table 11 

Conditional Probability Table for the Observables in the Design Medium Evidence Model 

     Pr (X = k) 

 
DKandDesignM nMDKandDesigθ  

Design 
ContextM extMDesignContθ **

tθ  
 

Low 
 

Medium 
 

High 

Novice 1  Low –1 –2.2 0.916827 0.081514 0.001659 

Novice 1  High 1 –1.8 0.832018 0.164297 0.003684 

Semester 1 2  Low –1 –1.2 0.598688 0.389184 0.012128 

Semester 1 2  High 1 –0.8 0.401312 0.572091 0.026597 

Semester 2 3  Low –1 –0.2 0.167982 0.748846 0.083173 

Semester 2 3  High 1 0.2 0.083173 0.748846 0.167982 

Semester 3 4  Low –1 0.8 0.026597 0.572091 0.401312 

Semester 3 4  High 1 1.2 0.012128 0.389184 0.598688 

Semester 4 5  Low –1 1.8 0.003684 0.164297 0.832018 

Semester 4 5  High 1 2.2 0.001659 0.081514 0.916827 

nMDKandDesigtextMDesignContextMDesignConttnMDKandDesignMDKandDesigtt dcc ,,,
** )()( +×+×= θθθ  

)0.6()(4.)(2** −+×+×= extMDesignContnMDKandDesigt θθθ  
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Table 12 

Conditional Probability Table for the Observables in the Design Hard Evidence Model 

     Pr (X = k) 

 
DKandDesignH nHDKandDesigθ  

Design 
ContextH extHDesignContθ **

tθ  
 

Low 
 

Medium 
 

High 

Novice 1  Low –1 –2.7 0.967705 0.031685 0.000611 

Novice 1  High 1 –2.3 0.930862 0.067780 0.001359 

Semester 1 2  Low –1 –1.7 0.802184 0.193320 0.004496 

Semester 1 2  High 1 –1.3 0.645656 0.344392 0.009952 

Semester 2 3  Low –1 –0.7 0.354344 0.613361 0.032295 

Semester 2 3  High 1 –0.3 0.197816 0.733045 0.069138 

Semester 3 4  Low –1 0.3 0.069138 0.733045 0.197816 

Semester 3 4  High 1 0.7 0.032295 0.613361 0.354344 

Semester 4 5  Low –1 1.3 0.009952 0.344392 0.645656 

Semester 4 5  High 1 1.7 0.004496 0.193320 0.802184 

nHDKandDesigtextHDesignContextHDesignConttnHDKandDesignHDKandDesigtt dcc ,,,
** )()( +×+×= θθθ  

)0.7()(4.)(2** −+×+×= extHDesignContnHDKandDesigt θθθ  

 To calculate the expected conditional probabilities for the observables in the 
Implement Medium instance and the Implement Hard instance the procedure just 
described is repeated.  The effective thetas for the Implement Medium and 
Implement Hard instances are: 

 
mentMDKandImpletontextMImplementContextMImplementCt

mentMDKandImplementMDKandImplett

dc
c

,,
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+×+
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θ

θθ
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 DKandNMMtontextMImplementContextMImplementCtDKandNMMDKandNMMtt dcc ,,,
** )()( +×+×= θθθ  (49) 

and  

 
mentHDKandImpletontextHImplementContextHImplementCt

mentHDKandImplementHDKandImplett

dc
c

,,

,
**

)(
)(

+×+

×=

θ

θθ
  (50) 

 DKandNMHtontextHImplementContextHImplementCtDKandNMHDKandNMHtt dcc ,,,
** )()( +×+×= θθθ  (51) 

where the coefficients and the intercepts in the expressions above are expected to 
take on the same values as those listed for the observables in the Design Medium 
instance and the Design Hard instance.  The distributions corresponding to SME 
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expectation for the Implement Medium and Implement Hard instances are therefore 
those given in Tables 11 and 12, respectively. 

 With these procedures, the quantification of the instances of the Troubleshoot 
Evidence Model is straightforward.  As with the Implement Evidence Model 
instances, we calculate two effective thetas instead of one.  And again, the expert 
expectations for the values for the coefficients and intercepts in the calculation of 
both effective thetas in the instances of the Troubleshoot Evidence Model are 
hypothesized to be equal to those in the Design and Implement Evidence Models.  
The expected condition distributions for the Easy, Medium, and Hard instances are 
those given in Tables 10, 11, and 12, respectively. 

 Exogenous variable. In the Evidence Models, only the Context variables are 
exogenous.  They are modeled as taking on values of –1 and +1, each with 
probability .5.  Modeling the values they can take on as symmetric around zero 
allows for their incorporation in the effective theta for observables without an 
intercept term (eq. (41)). 

Summary 

 In the preceding sections the variables in the three instances of the three 
Evidence Models have been quantitatively specified.  In terms of the joint 
probability distribution in eq. (10), we have specified ( )πθX ,|P  and hinted at 
the ( )ηP  terms. ( )πθX ,|P  refers to the distribution of the observable variables 

conditional on the Student Model variables, θ , and the conditional probabilities, π .   
In terms of the effective theta method, X  are the observable variables, π  are the 
conditional probabilities themselves, and η  consist of the various c and d parameters 

used to define the conditional distributions.  Note that we need not specify the 
conditional probabilities given the parameters that govern them (i.e., the ( )πθX ,|P  

terms), because the conditional probabilities are a function of the c and d parameters.  
In utilizing the GRM, we define the conditional probabilities as a mathematical 
function of the c and d parameters.  Given the c and d parameters, we calculate the 
conditional probabilities.  In other words, given the c and d parameters, the 
conditional probabilities are known with certainty.     

Specification of the Priors 

 So far, all the terms in eq. (10) have been fully specified except ( )λP  and ( )ηP .  
( )λP  refers to the distribution of the parameters that define the distributions of 

examinee proficiencies, the various c, and d, and e parameters in the Student Model.  
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( )ηP  refers to the distribution of the parameters that define the conditional 

probability distributions, the various c and d parameters in the calculation of the 
effective thetas in the Evidence Models.  In detailing the expectations of SMEs, we 
have already described some aspect of the distribution, namely, the value that 
corresponds to modeling particular expectations.  To enable Bayesian estimation, 
parameters must not be fixed, but modeled as random variables.  Leaning on 
intuition and past experience in IRT, we define the priors for all intercepts d to be 
distributed normally with mean defined by expert expectation and variance of 1.  
Similarly, we define the priors for all coefficients c to be distributed normally with 
mean defined by expert expectation and variance of 1, truncated at 0 to force all the 
coefficients to be positive.   

Markov Chain Monte Carlo (MCMC) Estimation 

The Full Bayesian Model 

 We have devoted some time to setting up the Bayesian model for the NetPASS 
assessment.  To do so, we have qualitatively defined relationships among the 
various variables in the NetPASS model to determine the structure of the probability 
distributions and then quantitatively specified the relationships, filling in the 
contents of the probability distributions.  All terms on the right side of eq. (10) have 
been specified.  Of course, all of the conditional probability distributions were based 
on the opinions of SMEs.  If we were certain the conditional probability distributions 
were correct, we could proceed by administering the NetPASS assessment to 
examinees, condition on their values for the observables, and draw inferences about 
their values on Student Model variables.  However, while we expect the views of the 
SMEs to be sensible (at least more sensible than those of anyone else), we seek to 
augment the information gathered from discussions with experts with actual data.  
That is, the model as we have so far specified it represents our prior beliefs about the 
relationships of several variables and the characteristics of the tasks presented to 
examinees; we will collect data to update our beliefs regarding the relationships and 
the task characteristics.  As with all Bayesian models, our updated beliefs will come 
in the form of posterior distributions.   

 With a model as complex as the NetPASS model straightforward application of 
Bayes theorem is computationally intractable.  What’s more, our current aim is 
refine our beliefs about the parameters that govern the relationships among 
variables.  We are therefore interested in the posterior distributions for these 
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parameters, which will represent the incorporation of information from the data to 
our prior beliefs based on expert opinion.  We seek to condition on observed data 
and refine our beliefs about the parameters, which for all unobserved parameters 
will be (following Bayes theorem) proportional to the prior for that parameter 
multiplied by the conditional probability of the observed variables given the 
unobserved parameters.  Expressed mathematically we aim to arrive at: 

 ( ) ( ) ( ) ( ) ( ) ( )ηηπλλθπθXXληπθ PPPPPP ××××∝ ||,||,,, . (42) 

 Here, ( )Xληπθ |,,,P  is the posterior distribution of all the unobservable 

parameters: examinee parameters (θ , the Student Model variables), examinee 
hyperparameters ( λ , those parameters which define the distributions of the Student 
Model variables), the conditional probabilities ( π ), and the task parameters (η , 

which define the conditional probabilities of the observables).15  

 An analytic solution for the posteriors for this model is computationally 
intractable and may very well be impossible.  Instead, we pursue an empirical 
approximation via Markov chain Monte Carlo (MCMC) estimation. MCMC 
estimation provides an adequate and appropriate framework for computation in 
Bayesian analyses (Gelman et al., 1995).  A complete treatment and description of 
MCMC estimation is beyond the scope and intent of this work; suffice it to say that 
for our current purposes, MCMC estimation consists of drawing from a series of 
distributions that is in the limit equal to drawing from the true posterior distribution 
(Gilks, Richardson, & Spiegelhalter, 1996a).  That is, to empirically sample from the 
posterior distribution, it is sufficient to construct a Markov chain that has the 
posterior distribution as its stationary distribution.  One popular method for 
constructing such a chain is via the Metropolis sampler (Metropolis, Rosenbluth, 
Rosenbluth, Teller, & Teller, 1953).  For a complete discussion of this and other 
MCMC techniques, see Brooks (1998) and Gilks, Richardson, and Spiegelhalter 
(1996b).   

Empirical Analysis 

 The data set consisted of 216 examinees taking between one and seven of the 
nine scenarios (typically, each scenario requires an hour and a half to complete); on 
average there were over 28 values for each of the observables.  The computer 
                                                 
15 Note the similarity between eq. (42), the posterior distribution, and eq. (10), the joint distribution.  
The difference is that in the joint distribution, X is a random variable, whereas in the posterior 
distributions for the parameters, X is fixed at the values that are actually observed.   
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program WinBUGS 1.4 (Spiegelhalter, Thomas, Best, & Lunn, 2003) was used to 
obtain a Metropolis sampling solution to the model.  Three chains were run in 
parallel for 100,000 iterations, each beginning with quite different starting values; 
WinBUGS’ convergence diagnostics (Brooks & Gelman, 1998; Gelman & Rubin, 
1992) were computed from these multiple chains to determine chain length and 
number of “burn-in” cycles.  Analysis of convergence consisted of monitoring the 
overestimate and the underestimate of the true posterior variance as detailed in 
Brooks and Gelman (1998).  Consideration of these convergence diagnostics 
indicated that as many as 36,000 iterations are necessary to achieve convergence.  
This slow convergence is in part due to the slow “mixing” of each individual chain 
due to considerably high autocorrelations, which in some cases were as high as .50, 
even for correlations of lag 40.  In these cases, the individual chains mix quite 
slowly; thus, chains starting from overdispersed starting values require a great 
number of iterations to converge.   

 Prior to data analysis, the first 40,000 iterations of each chain were discarded as 
“burn-in values” leaving 60,000 iterations per chain.  These remaining iterations 
were pooled in the analysis of the final data for several reasons.  First, all these 
iterations are empirical representations of the true posterior (i.e., values occur with 
the relative frequencies of the true posterior).  Second, though there exist 
autocorrelations among the values within each chain, there is no correlation among 
the values between parallel chains; that is, the chains are independent.  Pooling the 
values from parallel multiple chains serves to mitigate the impact of serial 
dependence (Gelman, 1996).  Finally, the use of multiple chains with overdispersed 
starting points not only serves to detect lack of convergence, but also ensures that all 
chief regions of the posterior distribution are accounted for in the analysis (Gelman, 
1996). 

Empirical Results and Discussion 

 General results. A question of immediate interest concerns the impact of the 
data on the posterior distributions for the parameters that define the conditional 
probability distributions.  The average posterior standard deviation was 0.73 with a 
standard deviation of 0.17.  Figure 6 displays the distribution of posterior standard 
deviations.  A metric for summarizing the impact is the percent increase in precision, 

given as 2

22

)(
)()(100 −

−− −
×

SDprior
SDpriorSDposterior

; a value of 0 indicates no new 

information is gained by incorporating the data while a value of 100 indicates that 
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there is twice as much information regarding a parameter after incorporating the 
data.  Recall that the prior standard deviation for all parameters is 1.0, and thus the 
percent increase in precision is merely a 1-1 transformation of the posterior standard 
deviation.  As it is a general metric for summarizing the impact of data in a Bayesian 
model, we will continue to discuss the results in terms of percent increase in 
precision.  The distribution of percent increase in precision for most of the 
parameters (three parameters were excluded from this analysis, as discussed below) 
is displayed in Figure 7.  The average increase in precision is 118.15 with a standard 
deviation of 111.81.  Select parameters will be discussed below in further detail; 
overall, most parameters showed reasonable increases in precision.  The average 
percent increase in precision for the parameters as listed by the portion of the model 
is given in Table 13.   

 For the most part, there were mild increases in precision for the variables that 
define the conditional distributions of the latent variables, that is, the variables in the 
Student Model, and the instrumental variables in the various instantiations of the 
Evidence Models.  Larger increases in posterior precision were observed in the 
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Figure 6.  Histogram of posterior standard deviations. 
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Figure 7.  Histogram of percent increase in precision. 

Table 13 

Average Percent Increase in Precision for Parameters That Define Conditional Distributions by 
Model Portion 

Model fragment Average increase in precision

Student Model 54.30 

Latent variables in Design Evidence Models 82.98 

Observable variables in Design Evidence Models 216.05 

Latent variables in Implement Evidence Models 85.04 

Observable variables in Implement Evidence Models 254.75 

Latent variables in Troubleshoot Evidence Models 85.99 

Observable variables in Troubleshoot Evidence Models 147.43 
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parameters that define the conditional distributions of the observables.  This is not a 
surprising result, as the evidence contained in the data (i.e., known values for certain 
observables) informs directly on the conditional distributions of observables, but 
only indirectly (via the propagation throughout the BIN) on the parameters that 
define the conditional distributions that are somewhat removed from the 
observables.  The variables that define the conditional distributions in the Student 
Model are most removed from the observables, and therefore, overall, show the 
smallest increase in precision. 

 Selected parameters. Two parameters, the intercepts in the effective theta 
equations for NDKandNMM and NDKandNMH, showed decreases in precision  
(–12.65 and –9.12, respectively).  It appears as though two factors at work here.  First, 
the data do not inform on intercepts as well as coefficients (mean percent increase in 
precision for intercepts is 21.860530; mean percent increase in precision for 
coefficients, excepting the three highest, is 162.910746).  In addition, recall that only 
one observable in each Implement Evidence Model instantiation informs on the 
NDKandNM variable; thus, it is not surprising that parameters associated with these 
variables are not as well estimated.  Similarly, intercept parameters for other 
instrumental variables on which only one observable is dependent showed small 
increases in precision.  The three parameters excluded from Figure 7 are those with 
the largest increases in precision.  These parameters were the coefficient for 
Implement ContextM for the third observable in the Implement Medium Evidence 
Model, the coefficient for DK and TroubleshootM for the fourth variable in the 
Troubleshoot Medium Evidence Model, and the coefficient for Implement ContextE 
for the third observable in the Implement Easy Evidence Model.  The values for the 
percent increase in precision are 814.94, 1020.05, and 3820.94, respectively.  Whether 
these values are appropriately due to greater-than-average amounts of information 
in the data or are artifacts of parameterization or estimation cannot be stated 
(although convergence indices and posterior distributions did not indicate 
abnormalities).  These parameters were therefore excluded from the previous 
analysis, and will be the focus of future work with larger samples. 

 Table 14 contains the prior means and summaries of the posterior distributions 
for the parameters in the effective theta equations for the first and third observables 
in the Troubleshoot Medium Evidence Model.  Note that because the observables 
come from the same Evidence Model instantiation, their priors were identical.  The  
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Table 14 

Posterior Results of Selected Parameters 

 
Parameter 

Prior  
mean 

Posterior 
mean 

Posterior 
SD 

% Increase  
in precision 

leshootMDKandTroubc ,1  2 2.029 0.440 415.82 

leshootMDKandTroubd ,1  –6 –6.778 0.793 59.18 

otContextMTroubleshoc ,1  0.4 0.932 0.610 168.92 

leshootMDKandTroubc ,3  2 1.923 0.450 393.17 

leshootMDKandTroubd ,3  –6 –4.865 0.855 36.86 

otContextMTroubleshoc ,3  0.4 0.759 0.536 248.07 

prior distributions for leshootMDKandTroubc ,1  and leshootMDKandTroubc ,3  were centered at 2.  Both 

posteriors have means close to 2 and the large increases in precision indicate the 
data (a) conform to SME expectation and (b) inform on the parameters considerably.  
Similarly, the posterior distributions for otContextMTroubleshoc ,1  and otContextMTroubleshoc ,3  also 

indicate that, for both observables, there was a stronger context effect involved than 
anticipated.  On the other hand, though the priors for the intercept parameters were 
the same, the posteriors are greatly different.  The intercept for the first observable is 
lower than the mean of the prior.  Conversely, the intercept for the second 
observable is higher than the mean of the prior (and the mean of the posterior for the 
first intercept).  The interpretation of this result is that, though they were expected to 
be of equal difficulty, the first observable is considerably more challenging than the 
second as can be seen by the number of Low, Medium, and High responses to these 
variables (Figure 8).   

 These sets of parameters define the conditional probability distributions for the 
two observable variables considered here.  The prior conditional probability 
distribution is contained in Table 11.  The posterior conditional distributions (based 
on the parameters’ posterior means) for the two observables are given in Tables 15 
and 16, where it is clearly seen that examinees are more likely to perform well on the 
third observable, as compared to the first. 
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Figure 8.  Frequencies of low, medium, and high responses to two observables from the 
Troubleshoot Medium Evidence Model. 

Table 15 

Posterior Conditional Probability Table for the First Observable in the 
Troubleshoot Medium Evidence Model 

   Pr (X = k)  

DKandTrbM Trb ContextM Low   Medium High 

Novice Low 0.975 0.024 0.000 

Novice High 0.860 0.137 0.003 

Semester 1 Low 0.839 0.157 0.003 

Semester 1 High 0.448 0.531 0.022 

Semester 2 Low 0.407 0.567 0.026 

Semester 2 High 0.096 0.757 0.147 

Semester 3 Low 0.082 0.748 0.169 

Semester 3 High 0.014 0.419 0.567 

Semester 4 Low 0.011 0.381 0.607 

Semester 4 High 0.002 0.089 0.909 
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Table 16 

Posterior Conditional Probability Table for the Third Observable in the 
Troubleshoot Medium Evidence Model 

   Pr (X = k)  

DKandTrbM Trb ContextM Low   Medium High 

Novice Low 0.846 0.151 0.003 

Novice High 0.546 0.439 0.015 

Semester 1 Low 0.445 0.533 0.022 

Semester 1 High 0.149 0.756 0.094 

Semester 2 Low 0.105 0.760 0.135 

Semester 2 High 0.025 0.558 0.417 

Semester 3 Low 0.017 0.466 0.517 

Semester 3 High 0.004 0.166 0.830 

Semester 4 Low 0.002 0.118 0.880 

Semester 4 High 0.001 0.029 0.971 

This example encapsulates the estimation of the conditional probability tables: The 
conditional distributions are parsimoniously parameterized, and prior beliefs 
regarding the psychometric properties of the observable variables based on expert 
expectations are revised in light of the information that pilot data bring to bear.   

 Of particular interest are the parameters associated with the adjustments to the 
conjunctions (e.g., NDKnEDKandDesigc ,  and DesignnEDKandDesigc ,  in eq. (27)).  If the posterior 

distributions indicate that these parameters are small (recall they are bounded below 
at zero), the inference is made that such adjustments to the conjunction may 
constitute overfitting and may be dropped from the model without great loss.  
However, the average posterior mean for these parameters is .928 (the minimum 
value was .744) indicating that such adjustments contribute to the model.  More 
general strategies for assessing model fit will be discussed below.   

 Examinee parameters. The preceding discussion has focused exclusively on the 
parameters that define the conditional probability distributions in the Student 
Model and the Evidence Models.  In addition, the Student Model variables 
themselves were monitored for all examinees.  Two research questions surrounding 
examinee parameters are (a) the possibility that there is more information in the data 
regarding examinee parameters than the parameters that define the conditional 
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distributions, as has been observed in other calibration studies (Mislevy et al., 2002), 
and (b) whether calibration studies can support inferences about examinees.   

 Though discrete, the impact of the data on the Student Model variables may 
still be discussed in terms of percent increase in precision.  An assumption of 
exchangeability implies the prior distributions for all examinees are identical.  Prior 
standard deviations and average percent increase in precision for the Student Model 
variables and the observed percent increase in precision for selected examinees are 
given in Table 17.   

 The average percent increase in precision indicates that the data inform on the 
Student Model parameters (Table 17) less than they do on the parameters that define 
the conditional probability distributions in either the Student Model or the Evidence 
Models (Table 13).  It is not surprising that there is the least amount of information 
regarding Network Proficiency as it is most removed from the data.  Though Network 

Disciplinary Knowledge and Network Modeling are parents of Network Proficiency 
(Figure 1) and seemingly more removed from the observables, they appear in the 
Evidence Models (Figures 3–5).  Indeed, we might expect to see large increases in 
precision for Network Disciplinary Knowledge and Network Modeling for this reason.  
This is partially borne out in the case of Network Modeling.  The low average percent 
increase in precision for Network Disciplinary Knowledge seems to indicate that there 
is not a lot of information in the data about Network Disciplinary Knowledge, relative 
to the other Student Model parameters.  However, the posterior standard deviation  

Table 17 

Summary of Prior and Posterior Results for Student Model Variables and Results for Selected 
Examinees 

 
 

Variable 

 
 

Prior SD 

 
Average 

posterior SD

Average % 
increase in 
precision 

% Increase for selected examinees
––––––––––––––––––––––––––––––

 A B  C 

Network 
Disciplinary 
Knowledge 

0.887 0.833 25.534 882.944 77.196 –10.418

Network Modeling 1.094 0.951 48.147 951.463 107.410 10.732

Network Proficiency 1.077 1.059 10.269 54.338 20.918 –20.648

Design 1.258 1.126 34.590 980.018 146.476 0.270

Implement 1.262 1.041 52.377 99.964 139.759 63.728

Troubleshoot 1.241 1.048 47.535 380.843 53.932 16.801
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for Network Disciplinary Knowledge is smaller than that of the other variables.16  A 
large average increase in precision is not observed because the prior standard 
deviation for Network Disciplinary Knowledge is also considerably smaller than that of 
the other variables; we do not observe a large increase in precision for Network 

Disciplinary Knowledge because the expert expectation regarding the variability of 
Network Disciplinary Knowledge was closer to what the data suggest, compared to the 
other Student Model variables. 

 Turning to the individual examinees, the data clearly inform most on examinee 
A and least on examinee C.  This is not a surprising result, as examinee A completed 
7 of the 9 tasks resulting in 28 observed data points, whereas examinee B completed 
6 tasks resulting in 19 data points, and examinee C completed only 1 task, resulting 
in 4 data points.  The lone task that examinee C completed was the Implement Easy 
task and therefore the largest increase in precision for examinee C is for Implement.  
Regarding the plausibility of inferences about examinees, we caution against 
interpreting the results for examinees who have completed only a few tasks, 
particularly regarding variables for which little or no evidence is observed (i.e., 
Design and Troubleshoot for examinee C). However, considerable increases in 
precision were observed for examinee A, and inferences regarding such an 
examinee’s proficiency would be more warranted.  For example, Table 18 gives the 
prior and posterior probabilities of Design for examinees A, B, and C.17  These 
probabilities are graphed in Figure 9.  The posterior for examinee C is much closer to 
the prior than the posteriors of the other examinees, reflecting the relative lack of 
knowledge regarding examinee C. The posterior distribution for examinee B 
indicates a high concentration in Semester 2 and Semester 3 relative to the prior; that 
is, the posterior probability for examinee B is higher than the prior for Semester 2 
and Semester 3 (and lower for Novice, Semester 1, and Semester 4).  As expected, the 
posterior distribution for examinee A is much narrower than either of the other 
posteriors, indicating a higher level of precision regarding examinee A.  Thus while 
we can say very little about examinee C, more can be said about examinee B, and 
even more can be said about examinee A. 

                                                 
16 Similarly, since Network Modeling appears in six of the Evidence Model instantiations, its posterior 
standard deviation is lower than those of the other Student Model variables (except Network 
Disciplinary Knowledge). 
17 The prior was calculated by compiling the distribution with all conditional probability parameters 
set to the values defined by expert expectation. 
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Table 18 

Prior and Posterior Density Functions of Design for Examinees A, B, and C 

 Prior A B     C 

Novice 0.114 0 0.002 0.211 

Semester 1 0.187 0 0.061 0.281 

Semester 2 0.271 0.005 0.500 0.251 

Semester 3 0.245 0.152 0.309 0.154 

Semester 4 0.184 0.843 0.127 0.104 
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Figure 9.  Prior and posterior probability densities of Design for Examinees A, B, and C. 

 The association between the number of data points and percent increase in 
precision observed among examinees A, B, and C bears out throughout the data.  
Table 19 gives the correlations between the number of observed values and the 
percent increase in precision for each of the Student Model variables; for five of the 
six Student Model variables, there is a statistically significant positive correlation  
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Table 19 

Correlations Between Number of Data Points and % Increase in Precision for 
Student Model Variables  

Correlation between number of data points and % increase in precision 

Network 
Disciplinary 
Knowledge 

Network 
Modeling 

Network 
Proficiency Design Implement  Troubleshoot 

.619* .596* –.009 .451* .326* .489* 

* Significant at the .01 level. 

between the number of data points and percent increase in precision.  This implies 
that, provided the examinees engage in many, if not all, of the tasks, reporting 
results for individual students may be justified, especially for low-stakes purposes, 
even without large calibration samples.  Though results would lean heavily on the 
expert-posited structure and initial estimates, changes from the prior to the posterior 
distributions can reflect the relative difficulty of the tasks and the contribution of 
Student Model variables. 

Conclusion and Pointers to the Future 

 One step in the immediate future is the assessment of model fit.  Strategies for 
fit assessment include those detailed by Gelman et al. (1995), Gilks et al. (1996b), and 
Spiegelhalter, Best, Carlin, and van der Linde. (2002).  Many promising techniques 
involve the use of replicated data distributions (e.g., Mislevy et al., 2002).  Avenues 
for investigating model fit include (among others) analysis of the structural 
representations of the model.  For instance, in the Student Model, Networking 

Disciplinary Knowledge served as a ceiling for Network Modeling; one alternative is to 
remove this constraint and investigate the impact.  Likewise, our interests lie in 
comparing the existing model to those that reduce the number of instrumental 
parameters or exclude adjustments to conjunctions.  Other potential routes include 
relaxing the assumption of roughly spaced intervals of the variables or testing the 
necessity of the context variables in the Evidence Models.  Other areas of future 
work concerning NetPASS include the collection of more data and the construction 
and investigation of new tasks.   
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 An effort has been put forth to document the processes involved in the 
quantitative specification of the expected relationships between latent and observed 
variables and the subsequent estimation of the model via MCMC procedures.  It has 
been emphasized that the procedures and techniques detailed and illustrated above 
have quite broad applicability for modeling in general and for modeling educational 
assessments in particular.  That is, the use of Bayesian inference networks as a 
means of propagating information in assessment contexts is consistent with the role 
of assessment as an evidentiary argument regarding examinees.  To that end, the 
construction and estimation of such networks is of the utmost importance.  It is our 
hope that this work will lead to further research in the area of constructing and 
estimating similar measurement models used in complex assessments.   



 

52 

References 

Andrich, D. (1982). An extension of the Rasch model for ratings providing both 
location and dispersion parameters. Psychometrika, 47, 105-113. 

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are 
scored in two or more nominal categories. Psychometrika, 37, 29-51. 

Bradlow, E. T., Wainer, H., & Wang, X. (1999).  A Bayesian random effects model for 
testlets. Psychometrika, 64, 153-168. 

Brooks, S. P. (1998). Markov chain Monte Carlo method and its application. The 
Statistician, 47, 69-100. 

Brooks, S. P., & Gelman, A. (1998). Alternative methods for monitoring convergence 
of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434-
455. 

Edwards, W. (1998). Hailfinder: Tools for and experiences with Bayesian normative 
modeling. American Psychologist, 53, 416-428. 

Formann, A. K. (1985). Constrained latent class models: Theory and applications. The 
British Journal of Mathematical and Statistical Psychology, 38, 87-111. 

Formann, A. K., & Kohlmann, T. (1998). Structural latent class models. Sociological 
Methods and Research, 26, 530-565.  

Gelman, A. (1996). Inference and monitoring convergence. In W. R. Gilks, S. 
Richardson, & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice 
(pp. 131-143). London: Chapman and Hall. 

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995).  Bayesian data analysis.  
London: Chapman and Hall. 

Gelman, A., & Rubin, D. (1992). Inference from iterative sampling using multiple 
sequences. Statistical Science, 7, 457-511. 

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996a). Introducing Markov chain 
Monte Carlo.  In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov 
chain Monte Carlo in practice (pp. 1-19). London: Chapman and Hall. 

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). (1996b). Markov chain Monte 
Carlo in practice. London: Chapman and Hall. 

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and 
applications. Boston: Kluwer. 



 

53 

Jensen, F. V. (1996). An introduction to Bayesian networks. New York: Springer-Verlag. 

Jensen, F. V. (2001). Bayesian networks and decision graphs.  New York: Springer-
Verlag. 

Martin, J. D., & VanLehn, K. (1995).  A Bayesian approach to cognitive assessment.  
In P. Nichols, S. Chipman, & R. Brennan (Eds.), Cognitively diagnostic assessment 
(pp. 141-165).  Hillsdale, NJ: Erlbaum. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 
(1953). Equations of states calculations for fast computing machines. Journal of 
Chemical Physics, 21, 1087-1091. 

Mislevy, R. J. (1994).  Evidence and inference in educational assessment.  
Psychometrika, 59, 439-483. 

Mislevy, R. J., & Patz, R. J. (1995, August). On the consequences of ignoring certain 
conditional dependencies in cognitive diagnosis. Presentation at the annual meeting 
of the American Statistical Association, Orlando, FL. 

Mislevy, R. J., Senturk, D., Almond, R. G., Dibello, L. V., Jenkins, F., Steinberg, L. S., 
et al. (2002).  Modeling conditional probabilities in complex educational assessments 
(CSE Tech. Rep. No. 580). Los Angeles: University of California, National 
Center for Research on Evaluation, Standards, and Student Testing (CRESST). 

Mislevy, R. J., Steinberg, L. S., & Almond, R. G. (2003).  On the structure of educational 
assessments (CSE Tech. Rep. No. 597). Los Angeles: University of California, 
National Center for Research on Evaluation, Standards, and Student Testing 
(CRESST). 

Patz, R. J., Junker, B. W., Johnson, M. S., & Mariano, L. T. (2002). The hierarchical 
rater model for rated test items and its application to large scale educational 
assessment data. Journal of Educational and Behavioral Statistics, 27, 341-384.  

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible 
inference. San Mateo, CA: Kaufmann.  

Reckase, M. D. (1985).  The difficulty of test items that measure more than one 
ability. Applied Psychological Measurement, 9, 401-412. 

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded 
scores. Psychometrika Monograph No. 17, 34(No. 4, Part 2). 

Schum, D. A. (1987). Evidence and inference for the intelligence analyst. Lanham, MD: 
University Press of America. 



 

54 

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian 
measures of model complexity and fit (with discussion). Journal of the Royal 
Statistical Society, Series B (Statistical Methodology), 64, 583-639. 

Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L., & Cowell, R. G. (1993).  Bayesian 
analysis in expert systems. Statistical Science, 8, 219-247. 

Spiegelhalter, D. J., Thomas, A., Best, N. G., & Lunn, D. (2003). WinBUGS version 1.4: 
User manual. Cambridge Medical Research Council Biostatistics Unit. Available 
3 November 2003 from http://www.mrc-bsu.cam.ac.uk/bugs/ 

Thurstone, L. L. (1947). Multiple factor analysis. Chicago: University of Chicago Press. 

Williamson, D. M., Bauer, M., Steinberg, L. S., Mislevy, R. J., & Behrens, J. T. (2003, 
April). Creating a complex measurement model using evidence centered design.  
Paper presented at the annual meeting of the National Council on 
Measurement in Education, Chicago. 


